An accelerated Levenberg-Marquardt algorithm for feedforward network

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An accelerated Levenberg-Marquardt algorithm for feedforward network

This paper proposes a new Levenberg-Marquardt algorithm that is accelerated by adjusting a Jacobian matrix and a quasi-Hessian matrix. The proposed method partitions the Jacobian matrix into block matrices and employs the inverse of a partitioned matrix to find the inverse of the quasi-Hessian matrix. Our method can avoid expensive operations and save memory in calculating the inverse of the qu...

متن کامل

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

Levenberg Marquardt ( LM ) Algorithm 1 –

1 – Introduction Parameter estimation for function optimization is a well established problem in computing, as there are countless applications in practice. For this work, we will focus specifically in implementing a distributed and parallel implementation of the Levenberg Marquardt algorithm, which is a well established numerical solver for function approximation given a limited data set. Para...

متن کامل

Training recurrent network with block-diagonal approximated Levenberg-Marquardt algorithm

In this paper, we propose the block-diagonal matrix to approximate the Hessian matrix in the Levenberg Mar-quardt method in the training of neural networks. Two weight updating strategies, namely asynchronous and synchronous updating methods were investigated. Asyn-chronous method updates weights of one block at a time while synchronous method updates all weights at the same time. Variations of...

متن کامل

A Layer-by-Layer Levenberg-Marquardt algorithm for Feedforward Multilayer Perceptron

The error backpropagation (EBP) algorithm for training feedforward multilayer perceptron (FMLP) has been used in many applications because it is simple and easy to implement. However, its gradient descent method prevents EBP algorithm from converging fast. To overcome the slow convergence of EBP algorithm, the second order methods have adapted. Levenberg-Marquardt (LM) algorithm is estimated to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Data and Information Science Society

سال: 2012

ISSN: 1598-9402

DOI: 10.7465/jkdi.2012.23.5.1027